Ubiquitous Computing

CONTEXT-AWARE COMPUTING

Bharath Horatti
Protocol Engineering & Technology (PET) Lab
Electrical Communication Engineering,
Indian Institute of Science,
Bangalore – 560012, India
Outline

• Motivation
• Context and Context-aware Computing
• Context-aware Applications
• Developing Context-aware Applications
• Handling Multiple Contexts
• Issues and Challenges
Motivation

- Modern computers are divorced from reality
 - Unaware of who, where, and what around them
 - Leads to mismatch

- Computers have extremely limited input
 - Aware of explicit input only
 - Can take a lot of effort to do simple things

- Context-Aware Computing
 - Making computers more aware of the physical and social worlds we live in
 - Breaking computers out of the box
Motivation for context aware mobility

• Use of context for mobility management decision enhances the performance
• Load sharing
• Enables functionalities according to a user's expectation...
What is Context?

• Definition Of Context

 - Any information that can be used to characterize the situation of an entity, where an entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and the application themselves.

 - Context is typically the location, identity, and state of people, groups, and computational and physical objects.

 Anind K. Dey and Gregory Abowd

Context is not information per se, but rather a property of information.

 Paul Dourish
What is Context?

• Context influences how we *perceive* information.
• Context enables us to *manage* the vast amount of information that surrounds us.
• Context *guides* us through the information surrounding us.
• Context allows to *discriminate* what is important and what is not.
• Context helps us to *adapt* to our surroundings.
Examples of Context

• Spatial: location, orientation, speed.
• Temporal: date, time of day, season, distance.
• Environmental: temperature, light, noise.
• Social: people nearby, activity, calendar.
• Resources: nearby, availability, adjacent.
• Physiological: blood pressure, heart rate, tone of voice, emotion, mood.
Categories of Context

• Computing Context
 - computing information (network connectivity, communication cost, communication bandwidth, nearby resource)

• User Context
 - user’s information (profile, location, nearby people)

• Physical Context
 - environmental information (lighting, noise, traffic, temperature)

• Time Context
 - such as time of day, week, month
Collection of Context

- **Explicit**: manual acquisition of context data from user(s)

- **Implicit**: automatic collection of context data from sensors (ideal)

Use of Context.

- **Active**: application automatically adapts to discovered context by changing the application’s behavior (phone ring)

- **Passive**: application presents the new/updated context to a user or makes the context persistent for the user to retrieve later (in/out)
− **Presentation** of information and services to a user
 − E.g., nearby printers, car on map
− **Automatic execution** of a service
 − E.g., car navigation that reroutes on missed turn, ring-changing cell phone
− **Tagging** of context to information for later retrieval
 − E.g., informal meeting notes collected during a meeting
Context-Awareness

• Computers aware of people, places, objects, info, and activities around them
 - e.g., Time, Identity, Location
 - e.g., Temp, Bandwidth, Current document
 - Info about Past, Present, and Future

• With context, computers can have richer forms of interaction beyond desktop
 - Structure activities
 - Navigate
 - Adapt to unusual situations
Context Awareness Concepts

- User context is any information that can be used to characterize the situation of a user
 - **User preferences**
 - Data the user directly specifies for configuring one or multiple services
 - **Sensor entities**
 - may also augment the user context with additional information
 - **Context deducer**
 - May augment the user context with new, *higher-level* data derived from other context data
Context Awareness

Richness in both capture and behaviors

• Proactive triggering of information display and reactions
 − The last time you performed this task (or a similar task) here are the steps you performed.
 − When your friend was recently here, they saw this.
 − Here is how an expert did this.
 − Your audience is interested in this aspect of your topic, please emphasize this in your presentation.
Context Awareness

• Streamlining interaction
• Remember Past Events
• Reminders for future events
 − Using Triggers, e.g. when I meet X tell him
• Sharing Experiences
 − Tell my daughter about my grandmother's horses when she visits a farm.
Context-Aware Systems

• Context Acquisition
 − How do we get context information?

• Context Representation
 − How do we model and store context information?

• Context Integration
 − How do we relate context information to our application concepts and data?

• Context-Awareness
 − How do we integrate context information into our computations and processes?
Context Awareness Concepts: The Context System

Terminal

External world

Server

GPS

Temperature sensor

Deducer

User preferences

Context platform

Context DB

Application

Application

Context platform

Context DB

Application

Application
Context-Aware Architecture
CONTEXT-AWARE COMPUTING

CONTEXT-AWARE APPLICATIONS
Motivation for context-aware application

- Users application should be available where-ever the user goes, in a suitably adapted form
- Context aware application is one which adapts its behaviour to a changing environment
 - E.g. Follow-Me applications
- Context aware applications need to know the location of users and equipment, and the capabilities of the equipment and networking infrastructure
What Do Applications Do With Context?

• What is a context-aware application?
 - Application that uses context to perform some behavior/service for its user(s)

• 3 types of behaviors:
 - Display context
 - Automatically execute/adapt services
 - Tag captured information for easier retrieval
A Rough Taxonomy of Context-Aware Applications

• Triggers
• Metadata Tagging
• Reconfiguration and Streamlining
• Input specification
• Presentation
A Rough Taxonomy of Context-Aware Applications

• Triggers
 - On X do Y
 - "Notify doctor and nearby ambulances if serious health problem detected"
 - "Remind me to talk to Chris about user studies next time I see him"
A Rough Taxonomy of Context-Aware Applications

- Metadata Tagging
 - "Where was this picture taken?"
 - "Find all notes taken while Mae was talking"
 - Memory prosthesis
A Rough Taxonomy of Context-Aware Applications

• Reconfiguration and Streamlining
 - Telephone forwarding and Teleport
 - Turn off cell phone in theaters
 - Automatically adjust brightness / volume
 - Automatic file pre-caching
 - Select modes in multimodal interaction
 - Multimedia / Bandwidth adaptation
A Rough Taxonomy of Context-Aware Applications

- **Input specification**
 - Send mail only to people in building now
 - Print to nearest printer
 - "Find gas stations nearest me"

- **Presentation of plain contexts**
 - Current location
 - Idle?
 - Currently in?
 - Contextual info about objects
 - Proximate selection
CONTEXT-AWARE COMPUTING

DEVELOPING CONTEXT-AWARE APPLICATIONS
Design Process of Typical Context-aware Applications

1. Specification
2. Acquisition and Representation
3. Delivery/Distribution
4. Reception and Storage
5. Action (the application)
Design Process: Specification

- Context to use
- Context behaviors to perform

It is a key step in the design process.

Design Process: Acquisition

- Install relevant sensors
 - Sensors: infrastructure or personal artifacts
 - Where to sense?
 - How often to update and report?
Design Process: Delivery/Distribution

• Contexts typically captured remotely from applications at different time

• Context captured in sensor-rich environment or device may need to serve multiple applications

=> Need to deliver and distribute context to multiple, remote applications
 – Infrastructure or middleware support

• Application/network-level delivery/routing models and transport mechanism
Design Process: Reception

• Application locates relevant sensors/contexts
 − Service discovery
• Requests contexts via queries, polls, notifications
 − Query language, event-notification mechanism
 − How often to request?
• Additional interpretation/abstraction/processing
 − Collection, aggregation, filtering, correlation, fusion,...
Design Process: Action

- Combine received contexts with previous contexts and system/application states for further analysis
- Perform actions based on the analysis results
- May treat context collection/processing as a separate service

Example: Simple Mobile Tour Guide

- Application:
 - Display list of all unseen locations in the area
 - Highlight relevant and preferred locations
 - Show map centered on user's position
 - Display information about closest location of interest
 - Directions to locations
CONTEXT-AWARE COMPUTING

HANDLING MULTIPLE CONTEXTS
Direct/Indirect Context-Awareness

- **Indirect context awareness:**
 - Situation
 - Context
 - Perceived
 - Sensor(s)
 - Communicate
 - Device A
 - Device B
 - Device C

- **Direct context awareness:**
 - Situation
 - Context
 - Perceived
 - Sensor(s)
 - Device A
 - Device B
 - Device C

Built-in sensors, context processing
Take Multiple-Sensor Approach

• Need to combine multiple simple sensors vs. one camera with powerful recognition capability
 - Gain rich data to infer useful context with little computation
• Real world situations: situations and sensors

<table>
<thead>
<tr>
<th>Situation</th>
<th>Sensor Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>User sleeps</td>
<td>It is dark, room temperature, silent, type of location is indoors, time is “night-time”, user is horizontal, specific motion pattern, absolute position is stable</td>
</tr>
<tr>
<td>User is watching TV</td>
<td>Light level/color is changing, certain audio level (not silent), room temperature, type of location is indoors, user is mainly stationary</td>
</tr>
<tr>
<td>User is cycling</td>
<td>Location type is outdoors, user is sitting, specific motion pattern of legs, absolute position is changing.</td>
</tr>
</tbody>
</table>
Example: TEA

- Technology Enabling Awareness
- Motivation: make personal mobile devices smarter
- Specs:
 - CPU: PIC16F877
 - Storage: 8K EEPROM
 - RAM: 200 Byte
 - Use serial line to communicate with the host
- For example, an acceleration sensor can infer cues like pattern of movement and current speed

Rules from cue to context: can be pre-defined or use supervised/unsupervised learning
Application

• Profile activation:
 - A user can have many profiles
 - Activate profiles according to the situation (in-hand, on-table, in-pocket, outdoors)
 - 87% certainty, 30 sec to calculate (not yet optimized)

• Context sharing (and privacy invasion):
CONTEXT-AWARE COMPUTING

ISSUES AND CHALLENGES
Issues and Challenges

Sensing the Context

• Heterogeneous sensors with uncertainty and conflicts (sensor fusion)
• High-level contexts: user’s activity
 - Camera technology and image processing
 - Consult calendar for what user is to do
• Context changes: subscription-notification
 - Polling rate?
Issues and Challenges

Context Interpretation

• Sophisticated applications require higher level forms of context
 ◦ Fusion

• Ambiguity:
 ◦ Sensors not 100% reliable, e.g. confidence value
 ◦ Precision / Accuracy / Granularity
 ◦ Different ways to deal:
 • Improve inference
 • Probability/fuzzy model
 • Bring the user into the loop
Summary

- Context is, any information that can be used to characterize situation of an entity.
- Context-Awareness is a **strategy** for improving interaction.
- Context-Aware System is made up of Context **Acquisition**, Context **Representation**, Context **Integration**, Context **Awareness**

- Design Process of Context-Aware Applications
 - Specification
 - Acquisition and Representation
 - Delivery/Distribution
 - Reception & Storage
 - Action